ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ СМЕСИ – ИМИТАТОР КОНДЕНСАТА ГАЗОВОГО НЕСТАБИЛЬНОГО (КГН-Ю-0)

ГСО 10857-2016

Назначение стандартного образца:

- передача единицы молярной доли утвержденного типа стандартным образцам 1-го разряда;
- поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) измерений в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: нефтегазодобывающая и перерабатывающая промышленность.

Описание стандартного образца: стандартный образец представляет собой искусственную смесь, состоящую из углеводородных компонентов C_1-C_{13} , метанола и постоянных газов. Смесь находится в баллоне постоянного давления поршневого типа, вместимостью от 1 дм 3 до 6 дм 3 российского или зарубежного производства (например, баллон фирмы Welker Engineering Company модели CP-2MA, CP-2GMA, CP-5MA, CP-5GMA, CKБ «Хроматэк» типа ПП-1000, ПП-2000, БП и др.).

Исходные вещества, применяемые для приготовления стандартных образцов, приведены в таблице 1, ТУ 0272-001-72689906-2014 (с изменением № 1).

Т а б л и ц а 1 - Исходные вещества, применяемые для приготовления стандартных образцов

Исходное вещество	Хим. формула	Нормативные документы на исходные вещества
метан	CH ₄	Aldrich №463035, TY 51-841-87
этан	C ₂ H ₆	Fluka №00582, ТУ 6-09-2454-85
пропан	C ₃ H ₈	Aldrich №536172, TY 51-882-90
н-бутан	C_4H_{10}	Aldrich №494402, TY 51-946-90
изобутан	i-C ₄ H ₁₀	Aldrich №539821, TV 6-09-2454-85
неопентан	neo-C ₅ H ₁₂	Chemos № 629084, Sigma-Aldrich № 644439
и-пентан	i-C ₅ H ₁₂	Fluka №59060, Sigma-Aldrich № 27725
н-пентан	C_5H_{12}	Aldrich №236705, TV 6-09-922-76
н-гексан	C ₆ H ₁₄	Aldrich №34859, TY 6-09-3375-78
н-гептан	C ₇ H ₁₆	Aldrich №246654, TY 6-09-4520-77

Окончание таблицы 1

Исходное вещество	Хим.	Нормативные документы на исходные
	формула	вещества
н-октан	C_8H_{18}	Fluka №74820, TУ 6-09-661-76
н-нонан	C_9H_{20}	Fluka №74250, TУ 6-09-660-76
н-декан	$C_{10}H_{22}$	Fluka №30540, TУ 6-09-659-77
ундекан	$C_{11}H_{24}$	Fluka №94000, TY 6-09-0662-76
додекан	$C_{12}H_{26}$	Fluka №44010, TУ 6-09-3730-74
тридекан	$C_{13}H_{28}$	Fluka №91490, ТУ 6-09-3732-74
метилциклопентан	C_6H_{12}	Fluka №66490, Aldrich № M39407
циклогексан	C_6H_{12}	Aldrich №650455, FOCT 14198-78
метилциклогексан	C_7H_{14}	Fluka №66294, Sigma-Aldrich №300306
бензол	C_6H_6	Fluka №12540, ГОСТ 5955-75
толуол	C_7H_8	Aldrich №650579, ΓΟCT 14710-78
метанол	CH₃OH	Aldrich №34860
м-ксилол	m-C ₈ H ₁₀	Fluka №95670, TУ 6-09-4556-77
о-ксилол	o-C ₈ H ₁₀	Fluka №95660, ТУ 6-09-915-76
п-ксилол	p-C ₈ H ₁₀	Fluka №95680, TУ 6-09-4556-77
этилбензол	C_8H_{10}	Fluka №03079, ΓΟСТ 9385-77
азот	N_2	Fluka №00474, TУ 2114-009-45905715-
		2011, ГОСТ 9293-74
диоксид углерода	CO ₂	Aldrich №295108, FOCT 8050-85

Форма выпуска: серийное производство периодически повторяющимися партиями.

Метрологические характеристики: аттестуемая характеристика -молярная доля компонента, %;

Нормированные метрологические характеристики СО приведены в таблице 2.

Таблица 2 – Нормированные метрологические характеристики СО (КГН-Ю-0)

Наименование аттестуемой характеристики*	Интервал допускаемых (номинальных) значений молярной доли**, %	Допускаемые значения относительной расширенной неопределенности*** при коэффициенте охвата
		к=2, %
Молярная доля метана ($\mathrm{CH_4}$),% Молярная доля этана ($\mathrm{C_2H_6}$),%	от 0 до 1·10 ⁻³	
	св. 1·10 ⁻³ до 0,1	3,5
	св. 0,1 до 1,0	2,5
	св. 1,0 до 10	1,5
	св. 10 до 20	1
	св. 20 до 25	0,6
Молярная доля пропан (С ₃ Н ₈), %	от 0 до 1·10 ⁻³	-
Молярная доля и-бутана (i- C_4H_{10}), %	св. 1·10 ⁻³ до 0,1	3,5
Молярная доля н-бутана (С ₄ H ₁₀), %	св. 0,1 до 1,0	2,5
Молярная доля н-пентана (C_5H_{12}), %	св. 1,0 до 10	1,5
Молярная доля и-пентана (i- C_5H_{12}), %	св. 10 до 20	1
Молярная доля н-гексана (С ₆ Н ₁₄) %,	св. 20 до 30	0,6

Окончание таблицы 2

Наименование аттестуемой характеристики*	Интервал допускаемых	Допускаемые значения
	(номинальных)	относительной
	значений молярной	расширенной
	доли**, %	неопределенности***
		при коэффициенте
		охвата k=2, %
Монариза пона про-притена	от 0 до 1⋅10-3	-
Молярная доля нео-пентана (neo- C_5H_{12}), %	св. 1·10 ⁻³ до 0,1	3,5
(пео-С $_{5}$ 11 $_{2}$), 70 Молярная доля азота (N $_{2}$), %	св. 0,1 до 1,0	2,5
Молярная доля азота (1925, 76 Молярная доля диоксида углерода		
молярная доля диоксида утперода (CO ₂), %	св. 1,0 до 3,0	1,5
· =/:	св. 1,0 до 5,0	1,5
Молярная доля метанол (СН₃ОН), %		
	от 0 до 1·10 ⁻³	-
Молярная доля н-гептана (C ₇ H ₁₆), %	св. 1·10 ⁻³ до 0,1	3,5
Молярная доля н-октана (C_8H_{18}), %	св. 0,1 до 1,0	2,5
Молярная доля н-нонана (C_9H_{20}), %	св. 1,0 до 10	1,5
Молярная доля н-декана ($C_{10}H_{22}$), %	св. 10 до 20	1
	от 0 до 1⋅10-3	<u>-</u>
Молярная доля ундекана ($C_{11}H_{24}$), %	св. 1·10 ⁻³ до 0,1	3,5
Молярная доля додекана ($C_{12}H_{16}$), %	св. 0,1 до 1,0	2,5
Молярная доля тридекана ($C_{13}H_{28}$), %	32, 3,2 2,3	· · · · · · · · · · · · · · · · · · ·
Молярная доля метилциклопентана (C_6H_{12}) , %	св. 1,0 до 10	1,5
	от 0 до 1⋅10 ⁻³	-
Молярная доля циклогексана (${ m C_6H_{12}}$), %	св. 1·10 ⁻³ до 0,1	3,5 2,5
Молярная доля метилциклогексана	св. 0,1 до 1,0	2,5
$(C_7H_{14}),\%$	св. 1,0 до 10	1,5
	св. 10 до 15	1
Молярная доля бензола (C_6H_6), %	от 0 до 1·10 ⁻³	-
Молярная доля толуола (С7Н8), %	св. 1·10 ⁻³ до 0,1	3,5
Молярная доля м-ксилола (m- C_8H_{10}), %	св. 0,1 до 1,0	2,5
Молярная доля о-ксилола (о-C ₈ H ₁₀), %		
Молярная доля п-ксилола (р- C_8H_{10}), % Молярная доля этилбензола (C_8H_{10}), %	св. 1,0 до 5,0	1,5

Примечания:

^{*} Синонимы наименований некоторых определяемых компонентов: и-бутан (i- C_4H_{10}) — 2-метилиропан, изопентан (i- C_5H_{12}) -2-метилбутан, нео-пентан (neo- C_5H_{12}) - 2,2-диметилиропан, м-ксилол (m- C_8H_{10}) — 1,3-диметилбензол, о-ксилол (o- C_8H_{10}) — 1,2-диметилбензол, п-ксилол (p- C_8H_{10}) — 1,4-диметилбензол.

^{**} Интервал допускаемых значений молярной доли компонента, приведенный с указанием значения расширенной неопределенности, является интервалом допускаемых аттестованных значений. Интервал допускаемых значений молярной доли компонента, приведенный без указания значения расширенной неопределенности, является интервалом допускаемых справочных значений. По согласованию с заказчиком справочные значения могут не указываться в паспорте СО.

^{***} Соответствует границам допускаемых значений относительной погрешности ($\pm\delta_0$) при доверительной вероятности (P=0,95).

Пределы допускаемых отклонений аттестуемых значений молярной доли определяемого компонента от номинальных (заказываемых) значений приведены в таблице 3.

Т а б л и ц а 3 - Пределы допускаемых отклонений действительных значений молярной доли определяемого компонента от номинальных (заказываемых)

Интервал номинальных значений СО (молярная доля, %)	Допускаемое относительное отклонения ±Д, %
от 1·10 ⁻³ до 0,1	50
св. 0,1 до 1,0	30
св. 1 до 10	20
св. 10 до 20	10
св. 20 до 30	5

Срок годности экземпляра: 24 месяца.

Знак утверждения типа: наносится печатным способом в правом нижнем углу первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт стандартного образца, включающий инструкцию по хранению и эксплуатации.

Документы, устанавливающие требования к стандартному образцу:

- 1. Техническая документация, по которой выпущен (будет выпускаться) стандартный образец: ТУ 0272-001-72689906-2014 «Смеси сжиженных углеводородов стандартные образцы состава. Технические условия» (с изменением № 1).
- 2. Документы, определяющие применение стандартного образца:

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах;

ГОСТ 8.616-2013 ГСИ. Лабораторные и потоковые хроматографы для контроля углеводородного состава сжиженных углеводородных газов. Методика поверки»;

ГОСТ Р 8.819-2013 ГСИ. Государственная поверочная схема для средств измерений, используемых при определении компонентного состава газового конденсата

ГОСТ Р 54484-2011 Газы углеводородные сжиженные. Методы определения углеводородного состава;

СТО Газпром 5.1-2001 Методика определения физико-химических характеристик нестабильных жидких углеводородов. Расчет плотности и объемных свойств;

- СТО Газпром 5.5-2007 «Конденсат газовый нестабильный. Методика определения компонентно-фракционного и группового углеводородного состава», и др.;
- **3. Нормативный документ на государственную поверочную схему:** ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах. В соответствии с ГОСТ 8.578-2014 разряд СО соответствует нулевому.
- 4. Периодичность актуализации технической документации на тип стандартного образца: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: представлены в целях внесения изменений, влияющих на метрологические характеристики, в описание типа ГСО 10857-2016 (КГН-Ю-0) баллоны № 32183, № 1730030, 24.11.2017.

Изготовитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74, корпус 1. ИНН 8602238132.

Заявитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74, корпус 1.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно - исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»); 190005, г. Санкт-Петербург, Московский пр., 19, аттестат аккредитации в области обеспечения единства измерений № RA.RU.310494, выдан 17.10.2016 г.

подпись

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев расшифровка подписи

П. «27» 04 2018 г.